36,316 research outputs found

    Preliminary evaluation of perennial forage legumes for organic farming in Finland

    Get PDF
    In 1998-2001 fourteen forage legume species were evaluated for their productivity in mixed organic swards. The aim was to find new alternatives for red clover. Medicago falcata produced the highest dry matter yield (about 11 000 kg/ha/year). Dry matter production of Trifolium pratense, Trifolium hybridum and Medicago sativa varied from 2 200 to 10 600 kg/ha/year

    Agroecological substantiation of Medicago sativa cultivation technology

    Get PDF
    Medicago sativa is one of the most productive legumes, which provides high protein production. Application of the biostimulant and microfertilizers is quite relevant and effective. Theoretically substantiates and presents ways to solve the scientific problem of formation of Medicago sativa productivity and the impact on them of seed treatment and foliar nutrition, taking into account the conditions of the Forest-Steppe right bankof Ukraine. The research was conducted in the research field of Vinnytsia National Agrarian University in the village of Agronomichne, Vinnytsia district during 2016–2018. Sinyukha variety was sown (2010). There has been established that the use of pre-sowing treatment of seeds and crops of Medicago sativa with biostimulant and microfertilizer improves the conditions of growth and development of the crop and increases individual productivity. On the researches it is established that fodder productivity of Medicago sativa sowing is provided by application of biostimulators of growth and microfertilizers on crops, genetic potential the culture realized as much as possible on the 2nd year of cultivation. The effect of growth stimulants on Medicago sativa productivity was defined and the optimal combination of macro- and microelements in modern complex fertilizers was determined, which contributes to the maximum possible yield of Medicago sativa green mass. New technological regulations for the use of bioorganic preparations and components in the technological scheme of Medicago sativa cultivation have been developed. It was found that on average for three years of vegetation of Medicago sativa sown on gray forest soils in the Forest-Steppe Right Bank, the highest yield of seeds and green mass provides the option of treatment with biostimulator Saprogum® and microfertilizer Wuxal®. Creating optimal conditions for mineral nutrition for Medicago sativa plants through the use of bacterial fertilizers and foliar nutrition contributed not only to the formation of high grain yields, but also significantly improved biochemical parameters and, consequently, increased crude protein content in grain, which is important for solving the problem of vegetable protein and balancing the diets of farm animals. The research results are aimed at solving current problems of technological renewal and development of agro-industrial complex on the basis of development of bioorganic models of varietal technology of Medicago sativa cultivation with orientation at the level of adequate arable productivity and climate fertility

    Залежність тривалості функціонування і продуктивності трав’янистих рослинних угруповань від їхнього видового складу

    No full text
    Результати багаторічного вивчення розвитку видів рослин у складі трав’янистих угруповань показали позитивний вплив багатокомпонентного складу на продуктивність надземної маси та на тривалість їх функціонування у травостої. Розробені варіанти рослинних угруповань рекомендуються для відновлення малопродуктивних порушених земель у Степовій зоні України. Найвищою продуктивністю надземної маси та стійкістю видового складу характеризуються варіанти рослинних угруповань, розроблені для поліпшення остепнених лук Elytrigia trichophora + Bromopsis riparia + Lolium multiflorum + Poa angustifolia + Мelilotus albus + Medicago sativa – 501,0 г/ м² або 5,0 т/га і типових степів Elytrigia intermedia + Agropyron pectіnatum + Arrhenatherum elatius + Onobrychis viciifolia + Medicago sativa – 488,0 г/м² або 4,9 т/га. За біогосподарською оцінкою надземної маси найбільш збалансованим за вмістом бобового компоненту є варіант Elytrigia trichophora + Bromopsis inermis + Medicago sativa + Poa angustifolia + Lolium multiflorum+ Melilotus albus (15%).The many-years study of plant species developing within herbaceous communities has found that a multicomponent composition has a positive impact on productivity of the top mass and duration of functioning in the grass stand. The elaborated options of plant communities are recommended for restoration of unproductive damaged lands in Ukrainian steppe zone. Plant communities developed to improve steppe meadows Elytrigia trichophora + Bromopsis riparia + Lolium multiflorum + Poa angustifolia + Мelilotus albus + Medicago sativa – 501,0 g/m² or 5,0 t/ha and type steppe Elytrigia intermedia + Agropyron pectіnatum + Arrhenatherum elatius + Onobrychis viciifolia + Medicago sativa – 488,0 g/m² or 4,9 t/ha have the highest top mass productivity and persistent species composition. According to the geoponical assessment of the top mass the community Elytrigia trichophora + Bromopsis inermis + Medicago sativa + Poa angustifolia + Lolium multiflorum + Melilotus albus is the most balanced on the content of legume component (15 %)

    Shade delays flowering in Medicago sativa

    Get PDF
    Shade intolerant plants respond to the decrease in the red (R) to far-red light (FR) ratio (R:FR) occurring under shade by elongating stems and petioles and re-positioning leaves, in a race to out-compete neighbors for the sunlight resource. In some annual species, these shade-avoidance responses (SAS) are accompanied by the early induction of flowering. Anticipated flowering is viewed as a strategy to set seeds before the resources become severely limiting. Little is known about the molecular mechanisms of SAS in perennial forage crops like alfalfa (Medicago sativa). To study SAS in alfalfa, we exposed alfalfa plants to simulated shade by supplementing with FR. Low R:FR produced a classical SAS, such as increased internode and petiole length but, unexpectedly, delayed flowering. To understand the molecular mechanisms involved in uncoupling SAS from early flowering, we used a transcriptomic approach. SAS were likely mediated by increased expression of msPIF3 and msHB2 in low R:FR. Constitutive expression of these genes in Arabidopsis led to SAS, including early flowering, strongly suggesting their roles are conserved. Delayed flowering was likely to be mediated by the downregulation of msSPL3, which promotes flowering in both Arabidopsis and alfalfa. Shade-delayed flowering in alfalfa may be important to extend the vegetative phase under sub-optimal light conditions and thus assure the accumulation of reserves necessary to resume growth after the next season. This article is protected by copyright. All rights reserved.Fil: Lorenzo, Christian Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Iserte, Javier Alonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Sanchez Lamas, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Antonietti, Mariana Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Garcia Gagliardi, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Hernando, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Dezar, Carlos Alberto Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Agrobiotecnología de Rosario; ArgentinaFil: Vazquez, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Agrobiotecnología de Rosario; ArgentinaFil: Casal, Jorge José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Cerdan, Pablo Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Preliminary evaluation of annually cultivated forage legumes for organic farming in Finland

    Get PDF
    In 1998-2001 nineteen forage legume species (Lupinus, Medicago, Melilotus, Pisum, Trifolium and Vicia species) were evaluated at two sites of Eastern Finland (Mikkeli and Juva). Species were studied for their annual productivity in pure stands and in mixtures with cereals (barley and oats) and Italian ryegrass. Swards were cut either twice or once (whole grain silage stage of barley)

    Effect of different plants on azo-dye wastewater bio-decolorization

    Get PDF
    AbstractTwo salt-tolerant plants (Medicago sativa L. and Sesbania cannabina Pers) as well as a kind of salt-tolerant azo-dye decolorization bacteria GTY (Gracilibacillus sp.GTY) were selected to treat acid red B or acid scarlet GR contaminated water. Results showed that Medicago sativa L. was more tolerant to the azo dyes and more helpful in promoting the azo-dye wastewater bio-decoloration than Sesbania cannabina Pers, but GTY density was higher in the root exudates of Sesbania cannabina Pers than that of Medicago sativa L. This indicated that the increase of GTY density only partially presented the azo-dye decolorization promoted by plants

    Diversity of Sinorhizobium meliloti from the Central Asian Alfalfa Gene Center

    Get PDF
    Sinorhizobium meliloti was isolated from nodules and soil from western Tajikistan, a center of diversity of the host plants (Medicago, Melilotus, and Trigonella species). There was evidence of recombination, but significant disequilibrium, between and within the chromosome and megaplasmids. The most frequent alleles matched those in the published genome sequence

    A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome.

    Get PDF
    A genetic linkage map is a valuable tool for quantitative trait locus mapping, map-based gene cloning, comparative mapping, and whole-genome assembly. Alfalfa, one of the most important forage crops in the world, is autotetraploid, allogamous, and highly heterozygous, characteristics that have impeded the construction of a high-density linkage map using traditional genetic marker systems. Using genotyping-by-sequencing (GBS), we constructed low-cost, reasonably high-density linkage maps for both maternal and paternal parental genomes of an autotetraploid alfalfa F1 population. The resulting maps contain 3591 single-nucleotide polymorphism markers on 64 linkage groups across both parents, with an average density of one marker per 1.5 and 1.0 cM for the maternal and paternal haplotype maps, respectively. Chromosome assignments were made based on homology of markers to the M. truncatula genome. Four linkage groups representing the four haplotypes of each alfalfa chromosome were assigned to each of the eight Medicago chromosomes in both the maternal and paternal parents. The alfalfa linkage groups were highly syntenous with M. truncatula, and clearly identified the known translocation between Chromosomes 4 and 8. In addition, a small inversion on Chromosome 1 was identified between M. truncatula and M. sativa. GBS enabled us to develop a saturated linkage map for alfalfa that greatly improved genome coverage relative to previous maps and that will facilitate investigation of genome structure. GBS could be used in breeding populations to accelerate molecular breeding in alfalfa
    corecore